

Coding Standards Document - Demo 4

Table of Contents

1. ODbJECHIVES.....ceeeeiiieie e ——————————— 3
7 | (=S € o T 4
3. General Coding Standards..........cccoovmmmmmmmimmmr i ————————— 5
4. Firebase Standards..........cccoiiieeiiiiiiiiin e s e e e n e nnn 7
LT/ =Y =3 T o TN 0o 11 ¢ o Y 1 8
T =] T o R 9

2 BLT'S

Coding Standards Document - Demo 4

This document defines the coding standards and conventions followed by our team
for Snap Vision. These guidelines are designed to maintain consistency and ensure
high-quality code throughout the project. Adhering to these practices is crucial in a
team environment to promote clarity and adaptability for all members.

1. Objectives
e Maintain a uniform coding style across all contributors.
e Improve code readability and facilitate collaboration.
e Minimize bugs and streamline onboarding for new developers.

e Enable future scalability and support modular development.

3 BLT'S

Coding Standards Document - Demo 4

2. File Structure

The project is divided into two main components:

e Frontend: A React Native app (snap-vision) built using TypeScript and

following Atomic Design principles.

Backend: A Node.js service (snap-vision-backend) with the plan to use

Firebase Cloud Functions.

snap-vision/

— _ tests /

— android/

— src/

| |— assets/

| |— components/
| | F— atoms/
| | F— molecules/
| | L— organisms/
| |— context/

| |— hooks/

| |— navigation/
| |— screens/
| |— store/

| — theme/

| —types/

|

|

L— utils/
L— services/

— web/
— .env
— App.tsx

L config_files/

snap-vision-backend/

— _ tests_ /
— pois/

— scripts/

— middleware/
F— src/

— index.js/

— .env

Jest test files
Android-specific native configurations

Fonts, icons, images

Basic Ul components

Combinations of atoms

Larger composed Ul structures

React context providers (e.g., theming, auth)
Custom reusable hooks

Stack/tab navigators

Main app screens (e.g., Login, Map, Home)
Global state (e.g., Redux, Zustand)

Theme config for light/dark mode

Shared TypeScript types/interfaces

Helper functions

Handle business logic

Web support

Environment variables

Entry point

Configs for Firebase, testing, etc.

Jest test files

Building and Room POls

Scripts to manage POls, crowd reports
Authorisation

Entry point
Environment variables

BLT'S

http://index.js/

Coding Standards Document - Demo 4

3. General Coding Standards
Languages:
e TypeScript (frontend)
e JavaScript (Node.js backend)
Naming:
e Files: camelCase (e.g., userProfile.ts)
e Components: PascalCase (e.g., HomeScreen.tsx)
e Functions: camelCase
e Tests:

o Unit: PascalCase (e.g. BadgeService.tsx)
o Integration: .integration suffix

Linting & Testing:
e Ensure all tests pass before committing and merging

e Ensure that the lint is successful before committing and merging

e Prettier and es linting are used to ensure uniformity and prevent broken code
from being committed

Best Practices:

e \Write clear, descriptive comments
e Keep code formatting clean and consistent.
e Follow an atomic structure to maximize reusability and efficiency.

e Require at least one team member to review code before approving pull
requests.

Error Handling:

e Use try/catch blocks to avoid uncaught errors

e Allow the app to fail gracefully

5 BLT'S

Coding Standards Document - Demo 4

e Provide meaningful and user-friendly error messages to aid debugging and
improve user experience.

Security Standards:

e All API keys, tokens, and credentials are stored in . env files.

e No sensitive keys may be hardcoded in source code or committed to version
control.

6 BLT'S

Coding Standards Document - Demo 4

4. Firebase Standards

Authentication:
e Firebase Auth is used for user login, registration, and session management.
Data Management:

e Firestore is used to store user profiles, POls, floorplans, timetables, crowd
reports and navigation metadata.

Security Rules:

e Firebase Storage and Firestore security rules strictly enforce role-based
access control.

e Rules ensure only authenticated and authorized users can access/update
relevant data.

Emulators:

e Firebase Emulator Suite is used in development to test rules and database
interactions without modifying the database.

Testing & Monitoring:

e Firebase Test Lab is used to run the app on a wide range of physical and
virtual devices for usability and compatibility testing.

e Firebase Performance Monitoring (FPM) tracks real-time application behavior,
including API response times, data loading, and user interactions, to identify
and resolve performance bottlenecks.

7 BLT'S

Coding Standards Document - Demo 4

5. Version Control
Git Branching Strategy:

main: Stable, production-ready code, release are tagged here
dev: Development branch for integration and sprint testing
feature/<name>: New features or components

test/<name>: Test-specific branches for isolated testing scenarios

fix/<name>: For bug fixes without interrupting the rest of the workflow

Project Board (GitHub Projects):

Columns: To Do — In Progress — Done

e Labels used for priority, size of task, component type (frontend/backend), and

feature area

Roadmap used to track sprint planning and milestone targets.

Tagging & Releases:

Use semantic versioning: v<MAJOR>.<MINOR>.<PATCH>

Tag releases in main and document release notes.

e Hotfixes follow fix/<name> workflow and are merged back into main and dev.

BLT'S

Coding Standards Document - Demo 4

6. Testing
Unit Testing:

e Jestis used to test components and services.

e Test files are located in the __ tests folder and separated into unit and
integration tests

Integration Testing:

e The Firebase Emulator Suite is used to test Firestore, Authentication, and
Cloud Functions in isolation.

e Emulators enable local simulation of real-time database behavior and security
rules.

Security Testing:

e Firebase Rules Unit Testing is used to simulate Firestore and Storage security
rules.

e Tests verify that only authorized users can access or modify protected
resources.

Performance Testing:

e Firebase Performance Monitoring (FPM) tracks real-time application
performance.

e Metrics include API response times, screen load times, and user interaction
latency.

o |dentified bottlenecks must be addressed before release.

Usability Testing:

e Firebase Test Lab is used to run the app on a variety of physical and virtual
devices.

9 BLT'S

Coding Standards Document - Demo 4

e Tests include layout responsiveness, navigation flows, and user accessibility.

e Usability feedback is incorporated into sprint review and iteration planning.

Coverage & Cl:

e A Cl pipeline (via GitHub Actions) executes tests and generates coverage
badges.

e Pull requests are prevented from merging if test coverage falls below the
specified thresholds.

10 BLT'S

	
	
	1. Objectives
	2. File Structure
	3. General Coding Standards
	
	
	
	
	
	
	
	
	
	4. Firebase Standards
	5. Version Control
	6. Testing

