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This document defines the coding standards and conventions followed by our team
for Snap Vision. These guidelines are designed to maintain consistency and ensure
high-quality code throughout the project. Adhering to these practices is crucial in a
team environment to promote clarity and adaptability for all members.

1. Objectives
e Maintain a uniform coding style across all contributors.
e Improve code readability and facilitate collaboration.
e Minimize bugs and streamline onboarding for new developers.

e Enable future scalability and support modular development.
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2. File Structure

The project is divided into two main components:

e Frontend: A React Native app (snap-vision) built using TypeScript and

following Atomic Design principles.

Backend: A Node.js service (snap-vision-backend) with the plan to use

Firebase Cloud Functions.

snap-vision/

— _ tests /

— android/

— src/

| |— assets/

| |— components/
| | F— atoms/
| | F— molecules/
| | L— organisms/
| |— context/

| |— hooks/

| |— navigation/
| |— screens/
| |— store/

| — theme/

| —types/

|

|

L— utils/
L— services/

— web/
— .env
— App.tsx

L config_files/

snap-vision-backend/

— _ tests_ /
— pois/

— scripts/

— middleware/
F— src/

— index.js/

— .env

# Jest test files
# Android-specific native configurations

# Fonts, icons, images

# Basic Ul components

# Combinations of atoms

# Larger composed Ul structures

# React context providers (e.g., theming, auth)
# Custom reusable hooks

# Stack/tab navigators

# Main app screens (e.g., Login, Map, Home)
# Global state (e.g., Redux, Zustand)

# Theme config for light/dark mode

# Shared TypeScript types/interfaces

# Helper functions

# Handle business logic

# Web support

# Environment variables

# Entry point

# Configs for Firebase, testing, etc.

# Jest test files

# Building and Room POls

# Scripts to manage POls, crowd reports
# Authorisation

# Entry point
# Environment variables
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3. General Coding Standards
Languages:
e TypeScript (frontend)
e JavaScript (Node.js backend)
Naming:
e Files: camelCase (e.g., userProfile.ts)
e Components: PascalCase (e.g., HomeScreen.tsx)
e Functions: camelCase
e Tests:

o Unit: PascalCase (e.g. BadgeService.tsx)
o Integration: .integration suffix

Linting & Testing:
e Ensure all tests pass before committing and merging

e Ensure that the lint is successful before committing and merging

e Prettier and es linting are used to ensure uniformity and prevent broken code
from being committed

Best Practices:

e \Write clear, descriptive comments
e Keep code formatting clean and consistent.
e Follow an atomic structure to maximize reusability and efficiency.

e Require at least one team member to review code before approving pull
requests.

Error Handling:

e Use try/catch blocks to avoid uncaught errors

e Allow the app to fail gracefully
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e Provide meaningful and user-friendly error messages to aid debugging and
improve user experience.

Security Standards:

e All API keys, tokens, and credentials are stored in . env files.

e No sensitive keys may be hardcoded in source code or committed to version
control.
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4. Firebase Standards

Authentication:
e Firebase Auth is used for user login, registration, and session management.
Data Management:

e Firestore is used to store user profiles, POls, floorplans, timetables, crowd
reports and navigation metadata.

Security Rules:

e Firebase Storage and Firestore security rules strictly enforce role-based
access control.

e Rules ensure only authenticated and authorized users can access/update
relevant data.

Emulators:

e Firebase Emulator Suite is used in development to test rules and database
interactions without modifying the database.

Testing & Monitoring:

e Firebase Test Lab is used to run the app on a wide range of physical and
virtual devices for usability and compatibility testing.

e Firebase Performance Monitoring (FPM) tracks real-time application behavior,
including API response times, data loading, and user interactions, to identify
and resolve performance bottlenecks.
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5. Version Control
Git Branching Strategy:

main: Stable, production-ready code, release are tagged here
dev: Development branch for integration and sprint testing
feature/<name>: New features or components

test/<name>: Test-specific branches for isolated testing scenarios

fix/<name>: For bug fixes without interrupting the rest of the workflow

Project Board (GitHub Projects):

Columns: To Do — In Progress — Done

e Labels used for priority, size of task, component type (frontend/backend), and

feature area

Roadmap used to track sprint planning and milestone targets.

Tagging & Releases:

Use semantic versioning: v<MAJOR>.<MINOR>.<PATCH>

Tag releases in main and document release notes.

e Hotfixes follow fix/<name> workflow and are merged back into main and dev.
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6. Testing
Unit Testing:

e Jestis used to test components and services.

e Test files are located in the __ tests  folder and separated into unit and
integration tests

Integration Testing:

e The Firebase Emulator Suite is used to test Firestore, Authentication, and
Cloud Functions in isolation.

e Emulators enable local simulation of real-time database behavior and security
rules.

Security Testing:

e Firebase Rules Unit Testing is used to simulate Firestore and Storage security
rules.

e Tests verify that only authorized users can access or modify protected
resources.

Performance Testing:

e Firebase Performance Monitoring (FPM) tracks real-time application
performance.

e Metrics include API response times, screen load times, and user interaction
latency.

o |dentified bottlenecks must be addressed before release.

Usability Testing:

e Firebase Test Lab is used to run the app on a variety of physical and virtual
devices.
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e Tests include layout responsiveness, navigation flows, and user accessibility.

e Usability feedback is incorporated into sprint review and iteration planning.

Coverage & Cl:

e A Cl pipeline (via GitHub Actions) executes tests and generates coverage
badges.

e Pull requests are prevented from merging if test coverage falls below the
specified thresholds.
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