
 

 

 
 

 

 

 

 

 

 

Coding Standards Document 
Demo 4 – Updated Version 

 
 

 

 

 

 



 ​ ​ Coding Standards Document - Demo 4 

 

Table of Contents​
 
1. Objectives...............................................................................................................3 
2. File Structure..........................................................................................................4 
3. General Coding Standards................................................................................... 5 
4. Firebase Standards............................................................................................... 7 
5. Version Control...................................................................................................... 8 
6. Testing.................................................................................................................... 9 
 

 

 

 

2​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 
This document defines the coding standards and conventions followed by our team 
for Snap Vision. These guidelines are designed to maintain consistency and ensure 
high-quality code throughout the project. Adhering to these practices is crucial in a 
team environment to promote clarity and adaptability for all members. 

1. Objectives 
●​ Maintain a uniform coding style across all contributors.​

 
●​ Improve code readability and facilitate collaboration.​

 
●​ Minimize bugs and streamline onboarding for new developers.​

 
●​ Enable future scalability and support modular development. 

 

3​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 

2. File Structure 
The project is divided into two main components: 

●​ Frontend: A React Native app (snap-vision) built using TypeScript and 
following Atomic Design principles.​
 

●​ Backend: A Node.js service (snap-vision-backend) with the plan to use 
Firebase Cloud Functions. 

 
snap-vision/ 
├── __tests__/              ​ # Jest test files 
├── android/               ​ # Android-specific native configurations 
├── src/ 
│   ├── assets/            ​ # Fonts, icons, images 
│   ├── components/ 
│   │   ├── atoms/        ​ # Basic UI components 
│   │   ├── molecules/    ​ # Combinations of atoms 
│   │   └── organisms/    ​ # Larger composed UI structures 
│   ├── context/           ​ # React context providers (e.g., theming, auth) 
│   ├── hooks/             ​ # Custom reusable hooks 
│   ├── navigation/       ​ # Stack/tab navigators 
│   ├── screens/           ​ # Main app screens (e.g., Login, Map, Home) 
│   ├── store/             ​ # Global state (e.g., Redux, Zustand) 
│   ├── theme/             ​ # Theme config for light/dark mode 
│   ├── types/             ​ # Shared TypeScript types/interfaces 
│   └── utils/             ​ # Helper functions 
│   └── services/             ​ # Handle business logic 
├── web/                   ​ # Web support 
├── .env                   ​ # Environment variables 
├── App.tsx                ​ # Entry point 
└── config_files/          ​ # Configs for Firebase, testing, etc. 
 
 
snap-vision-backend/ 
├── __tests__/              ​ # Jest test files 
├── pois/​ ​ ​ # Building and Room POIs 
├── scripts/​ ​ ​ # Scripts to manage POIs, crowd reports 
├── middleware/​ ​ # Authorisation 
├── src/​ ​ ​  
├── index.js/ ​ ​ # Entry point 
├── .env ​ ​ ​ # Environment variables 

4​ ​     BLT’S 

http://index.js/


 ​ ​ Coding Standards Document - Demo 4 

 

3. General Coding Standards 
Languages: ​
 

●​ TypeScript (frontend)​
 

●​ JavaScript (Node.js backend) 
 
Naming:​
 

●​ Files: camelCase (e.g., userProfile.ts)​
 

●​ Components: PascalCase (e.g., HomeScreen.tsx) 
 

●​ Functions: camelCase 
 

●​ Tests:  
○​ Unit: PascalCase (e.g. BadgeService.tsx) 
○​ Integration: .integration suffix 

 
Linting & Testing:​
 

●​ Ensure all tests pass before committing and merging 
 

●​ Ensure that the lint is successful before committing and merging 
 

●​ Prettier and es linting are used to ensure uniformity and prevent broken code 
from being committed​
 

Best Practices:​
 

●​ Write clear, descriptive comments 
 

●​ Keep code formatting clean and consistent.​
 

●​ Follow an atomic structure to maximize reusability and efficiency.​
 

●​ Require at least one team member to review code before approving pull 
requests. 
 

Error Handling: 
 

●​ Use try/catch blocks to avoid uncaught errors 
 

●​ Allow the app to fail gracefully 
 

5​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 
●​ Provide meaningful and user-friendly error messages to aid debugging and 

improve user experience. 
 

 Security Standards: 
 

●​ All API keys, tokens, and credentials are stored in .env files. 
 

●​ No sensitive keys may be hardcoded in source code or committed to version 
control. 
 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

6​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 

4. Firebase Standards 
Authentication: 

●​ Firebase Auth is used for user login, registration, and session management. 

Data Management: 

●​ Firestore is used to store user profiles, POIs, floorplans, timetables, crowd 
reports and navigation metadata. 

Security Rules: 

●​ Firebase Storage and Firestore security rules strictly enforce role-based 
access control. 

●​ Rules ensure only authenticated and authorized users can access/update 
relevant data. 

Emulators: 
 

●​ Firebase Emulator Suite is used in development to test rules and database 
interactions without modifying the database. 

Testing & Monitoring: 

●​ Firebase Test Lab is used to run the app on a wide range of physical and 
virtual devices for usability and compatibility testing.​
 

●​ Firebase Performance Monitoring (FPM) tracks real-time application behavior, 
including API response times, data loading, and user interactions, to identify 
and resolve performance bottlenecks. 

 

7​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 

5. Version Control 
Git Branching Strategy: 

●​ main: Stable, production-ready code, release are tagged here​
 

●​ dev: Development branch for integration and sprint testing​
 

●​ feature/<name>: New features or components​
 

●​ test/<name>: Test-specific branches for isolated testing scenarios 

●​ fix/<name>: For bug fixes without interrupting the rest of the workflow​
 

Project Board (GitHub Projects): 

●​ Columns: To Do → In Progress → Done​
 

●​ Labels used for priority, size of task, component type (frontend/backend), and 
feature area​
 

●​ Roadmap used to track sprint planning and milestone targets. 

 

Tagging & Releases: 

●​ Use semantic versioning: v<MAJOR>.<MINOR>.<PATCH>​
 

●​ Tag releases in main and document release notes.​
 

●​ Hotfixes follow fix/<name> workflow and are merged back into main and dev. 

 

8​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 

6. Testing 
Unit Testing: 

●​ Jest is used to test components and services.​
 

●​ Test files are located in the __tests__ folder and separated into unit and 
integration tests 

 

Integration Testing: 

●​ The Firebase Emulator Suite is used to test Firestore, Authentication, and 
Cloud Functions in isolation.​
 

●​ Emulators enable local simulation of real-time database behavior and security 
rules. 

 

Security Testing: 

●​ Firebase Rules Unit Testing is used to simulate Firestore and Storage security 
rules.​
 

●​ Tests verify that only authorized users can access or modify protected 
resources. 

 

Performance Testing: 

●​ Firebase Performance Monitoring (FPM) tracks real-time application 
performance.​
 

●​ Metrics include API response times, screen load times, and user interaction 
latency.​
 

●​ Identified bottlenecks must be addressed before release.  

 

Usability Testing: 

●​ Firebase Test Lab is used to run the app on a variety of physical and virtual 
devices.​
 

9​ ​     BLT’S 



 ​ ​ Coding Standards Document - Demo 4 

 
●​ Tests include layout responsiveness, navigation flows, and user accessibility.​

 
●​ Usability feedback is incorporated into sprint review and iteration planning. 

 

 
Coverage & CI: 
 

●​ A CI pipeline (via GitHub Actions) executes tests and generates coverage 
badges.​
 

●​ Pull requests are prevented from merging if test coverage falls below the 
specified thresholds. 

 

10​ ​     BLT’S 


	 
	 
	1. Objectives 
	2. File Structure 
	3. General Coding Standards 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	4. Firebase Standards 
	5. Version Control 
	6. Testing 

